GATE 2023 Civil engineering exam brochure

Gate 2023 Civil Engineering Exam Preparation

Posted by

GATE 2023 exam will be organized by IIT Kanpur. GATE is an entrance test for post-graduation which opens many doors of opportunities. GATE is organized every year by any of the 7 IITs and is held online mode. From GATE 2021, the new thing is that a candidate can opt for more than one paper in the exam. It means civil engineer BE or BTech holder can appear in civil engineering as well as architecture both.
With the valid GATE score a candidate can get admission in reputed colleges and becomes eligible for financial assistance from Ministry Of Education (former Ministry of Human Resource Development).

Download GATE 2023 Latest Brochure here

Fee Structure of GATE 2023

Regular Period (30th August to 30th Sept. 2022) During the Extended Period (1st Oct. to 7th Oct. 2022)
Female candidates ₹ 850 ₹ 1350
SC / ST / PwD* category candidates ₹ 850 ₹ 1350
All other candidates ₹ 1700 ₹ 2200

Important Dates For GATE 2023

Activity Day Date
Online Application Process Opens Tuesday 30th August 2022
Closing Date of REGULAR online registration/ application process Friday 30th September 2022
Closing Date of EXTENDED online registration/ application process Friday 7th October 2022
Modifications in GATE 2023 Application Friday to Friday 4th to 11th November 2022
Availability of GATE Admit cards for download Tuesday 03rd January 2023
GATE 2023 Examinations Saturday & Sunday 04th, 05 th and 11th, 12th Febuary 2023
Candidate’s response available in Application portal Wednesday 15th Febuary 2023
Answer keys available on Application portal Tuesday 21st Febuary 2023
Submission of challenges by candidates on Answer Keys Wednesday to Saturday 22nd to 25th Febuary 2023
Announcement of Results for GATE 2023 Thursday 16th March 2023
Availability of Score Card for download by candidates Tuesday 21st March 2023

Download PDF of the syllabus here.

Syllabus for civil engineering paper

Section 1: Engineering Mathematics

Linear Algebra: Matrix algebra; Systems of linear equations; Eigen values and Eigen vectors.
Calculus: Functions of single variable; Limit, continuity and differentiability; Mean value theorems, local maxima and minima; Taylor series; Evaluation of definite and indefinite integrals, application of definite integral to obtain area and volume; Partial derivatives; Total derivative; Gradient, Divergence and Curl, Vector identities; Directional derivatives; Line, Surface and Volume integrals.
Ordinary Differential Equation (ODE): First order (linear and non-linear) equations; higher order linear equations with constant coefficients; Euler-Cauchy equations; initial and boundary value problems.
Partial Differential Equation (PDE): Fourier series; separation of variables; solutions of one- dimensional diffusion equation; first and second order one-dimensional wave equation and two-dimensional Laplace equation.
Probability and Statistics: Sampling theorems; Conditional probability; Descriptive statistics – Mean, median, mode and standard deviation; Random Variables – Discrete and Continuous, Poisson and Normal Distribution; Linear regression.
Numerical Methods: Error analysis. Numerical solutions of linear and non-linear algebraic equations; Newton’s and Lagrange polynomials; numerical differentiation; Integration by trapezoidal and Simpson’s rule; Single and multi-step methods for first order differential equations.

Section 2: Structural Engineering

Engineering Mechanics: System of forces, free-body diagrams, equilibrium equations; Internal forces in structures; Frictions and its applications; Centre of mass; Free Vibrations of undamped SDOF system.
Solid Mechanics: Bending moment and shear force in statically determinate beams; Simple stress and strain relationships; Simple bending theory, flexural and shear stresses, shear centre; Uniform torsion, Transformation of stress; buckling of column, combined and direct bending stresses.
Structural Analysis: Statically determinate and indeterminate structures by force/ energy methods; Method of superposition; Analysis of trusses, arches, beams, cables and frames; Displacement methods: Slope deflection and moment distribution methods; Influence lines; Stiffness and flexibility methods of structural analysis.
Construction Materials and Management: Construction Materials: Structural Steel – Composition, material properties and behaviour; Concrete – Constituents, mix design, short-term and long-term properties. Construction Management: Types of construction projects; Project planning and network analysis – PERT and CPM; Cost estimation.
Concrete Structures: Working stress and Limit state design concepts; Design of beams, slabs, columns; Bond and development length; Prestressed concrete beams. Steel Structures: Working stress and Limit state design concepts; Design of tension and compression members, beams and beam- columns, column bases; Connections – simple and eccentric, beam-column connections, plate girders and trusses; Concept of plastic analysis -beams and frames.

Section 3: Geotechnical Engineering





Soil Mechanics: Three-phase system and phase relationships, index properties; Unified and Indian standard soil classification system; Permeability – one dimensional flow, Seepage through soils – two – dimensional flow, flow nets, uplift pressure, piping, capillarity, seepage force; Principle of effective stress and quicksand condition; Compaction of soils; One- dimensional consolidation, time rate of consolidation; Shear Strength, Mohr’s circle, effective and total shear strength parameters, Stress-Strain characteristics of clays and sand; Stress paths.
Foundation Engineering: Sub-surface investigations – Drilling bore holes, sampling, plate load test, standard penetration and cone penetration tests; Earth pressure theories – Rankine and Coulomb; Stability of slopes – Finite and infinite slopes, Bishop’s method; Stress distribution in soils – Boussinesq’s theory; Pressure bulbs, Shallow foundations – Terzaghi’s and Meyerhoff’s bearing capacity theories, effect of water table; Combined footing and raft foundation; Contact pressure; Settlement analysis in sands and clays; Deep foundations – dynamic and static formulae, Axial load capacity of piles in sands and clays, pile load test, pile under lateral loading, pile group efficiency, negative skin friction.

Section 4: Water Resources Engineering

Fluid Mechanics: Properties of fluids, fluid statics; Continuity, momentum and energy equations and their applications; Potential flow, Laminar and turbulent flow; Flow in pipes, pipe networks; Concept of boundary layer and its growth; Concept of lift and drag.
Hydraulics: Forces on immersed bodies; Flow measurement in channels and pipes; Dimensional analysis and hydraulic similitude; Channel Hydraulics – Energy-depth relationships, specific energy, critical flow, hydraulic jump, uniform flow, gradually varied flow and water surface profiles.
Hydrology: Hydrologic cycle, precipitation, evaporation, evapo-transpiration, watershed, infiltration, unit hydrographs, hydrograph analysis, reservoir capacity, flood estimation and routing, surface run-off models, ground water hydrology – steady state well hydraulics and aquifers; Application of Darcy’s Law.
Irrigation: Types of irrigation systems and methods; Crop water requirements – Duty, delta, evapo-transpiration; Gravity Dams and Spillways; Lined and unlined canals, Design of weirs on permeable foundation; cross drainage structures.

Section 5: Environmental Engineering

Water and Waste Water Quality and Treatment: Basics of water quality standards – Physical, chemical and biological parameters; Water quality index; Unit processes and operations; Water requirement; Water distribution system; Drinking water treatment.
Sewerage system design, quantity of domestic wastewater, primary and secondary treatment. Effluent discharge standards; Sludge disposal; Reuse of treated sewage for different applications.
Air Pollution: Types of pollutants, their sources and impacts, air pollution control, air quality standards, Air quality Index and limits.
Municipal Solid Wastes: Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment and disposal).


Section 6: Transportation Engineering

Transportation Infrastructure: Geometric design of highways – cross-sectional elements, sight distances, horizontal and vertical alignments.
Geometric design of railway Track – Speed and Cant.
Concept of airport runway length, calculations and corrections; taxiway and exit taxiway design.
Highway Pavements: Highway materials – desirable properties and tests; Desirable properties of bituminous paving mixes; Design factors for flexible and rigid pavements; Design of flexible and rigid pavement using IRC codes
Traffic Engineering: Traffic studies on flow and speed, peak hour factor, accident study, statistical analysis of traffic data; Microscopic and macroscopic parameters of traffic flow, fundamental relationships; Traffic signs; Signal design by Webster’s method; Types of intersections; Highway capacity.

Section 7: Geomatics Engineering

Principles of surveying: Errors and their adjustment; Maps – scale, coordinate system; Distance and angle measurement – Levelling and trigonometric levelling; Traversing and triangulation survey; Total station; Horizontal and vertical curves.
Photogrammetry and Remote Sensing – Scale, flying height; Basics of remote sensing and GIS.

Download PDF of the GATE 2023 Syllabus here
Read Also-
Most Useful Books For Geotechnical Engineering
Most Useful Structure Analysis Books
Most Useful Sites to Download Civil Engineering Books


Leave a Reply

Your email address will not be published. Required fields are marked *